
VII. Conclusion
 NAMs offer clear scientific promise to enhance ED assessments and reduce 

reliance on in vivo testing

 Realizing regulatory confidence requires coordinated action: further development 
of AOPs, representative case studies, validation and interlaboratory work, clear 
guidance outlining NAMs acceptability, active cross-sector regulatory dialogue and 
experience sharing

 With these steps, NAMs can transition from promising science to practical tools 
that support protective, efficient and humane regulatory decisions across EU 
sectors

I. Introduction
 Nearly three decades ago, the European Union began taking steps to regulate 

endocrine disruptors (EDs) due to their potential impacts on both human health 
and the environment. EDs are of particular concern, as exposure, especially early 
in life, has been associated with developmental, reproductive, immune and 
neurological disorders, as well as an increased cancer risk.

 Among EDs, thyroid-mediated disruption represents a particularly complex 
scientific and regulatory challenge across sectors such as plant protection 
products (PPP), biocides, industrial chemicals, and pharmaceuticals. 
Conventional animal studies provide limited mechanical insights and extrapolation 
to humans is not always straightforward. To address these gaps, New Approach 
Methodologies (NAMs), defined as in vitro, in silico, and ex vivo methods, are 
being developed, though regulatory acceptance remains in its early stage.
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III. ED Assessment steps

Overall conclusion
Based on Weight of evidence (WoE) Separate conclusion for HH and ENV

Mode of Action Analysis (MoA), if required

Postulate MoA Adverse Outcome Pathways (AOP) Generate evidence (e.g. NAMs)

Initial analysis of the evidence

EATS adversity/activity sufficiently investigated? EATS adversity/activity observed?

Data gathering

Standard tox studies Published literature Databases (e.g. ToxCast)

II. Regulatory context

 Crop Protection & Biocides: In 2018, EFSA and ECHA published their 
Guidance for identifying ED properties with clear criteria; ED evaluation became 
operational under PPPR and BPR. Focus on EATS modalities (Oestrogen, 
Androgen, Thyroid and Steroidogenesis)

 Industrial chemicals: Delegated Regulation 2023/707 amending the CLP 
regulation introduced new hazard classes (ED Human Health (HH) and ED 
Environment (ENV)) which trigger REACH registration dossier updates. New 
hazard classes also applies to PPP and biocides 

 Pharmaceuticals: EMA Environmental Risk Assessment Guidance (2024) 
introduced requirements for tailored ED assessments

Figure 1. The three criteria of ED identification

V. NAMs for ED assessment : examples
Comparative Liver Enzyme Induction Study (T-modality)

Comparison of liver enzyme induction (UDPGT) in rat and human 
hepatocytes and species differences following chemical exposure 

Can provide evidence of the non-human relevance of the UDGPT MoA,    
if T4-UGT is increased in rat cells but not in human cells

Validation issues (positive controls), regulatory acceptance still uncertain

ToxCast ER Bioactivity Model (E-modality)

 Developed by the U.S. EPA (Browne et al., 2015 and 2017)

 Computational model based on 18 high-throughput in vitro assays (HTS)

 Recognized in updated CLP Guidance (Nov 2024) as equivalent to the 
Uterotrophic assay (OECD TG 440) for low-metabolism compounds 

 → supports reduction of in vivo assays
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VI. Discussion
 Regulatory trust in NAMs relies on their reliability, reproducibility, and ability to be 

scaled

 Scientific strengths of NAMs: mechanistic insights, potential for human-relevant 
predictions, higher throughput for screening/prioritization, and reduction of animal 
use (3Rs principle)

 Thyroid endocrine disruption involves complex interacting mechanisms, is highly 
linked to development and is difficult to assess. Most recent NAMs related to 
thyroid disruption lack formal validation 

 EU initiatives such as PARC, EURION, and ASPIS are driving the development of 
robust fit-for-purpose NAMs while the Joint Research Centre (JRC) and EU-
NETVAL network of laboratories is advancing the validation of methods 
addressing thyroid hormone disruption

 Suggestions for the future: harmonize sectoral expectations                                  
(EFSA, ECHA, REACH, EU Member State regulators), embed NAM acceptance 
criteria into guidance, and promote early multi-stakeholder dialogue (industry, 
CROs, regulators, academia, and EU projects)

Figure 4. Ongoing EU projects / research centers fostering NAM development, validation and integration

IV. Thyroid modality: AOP network

Figure 3. Thyroid AOP, adapted from Noyes et al. (2019)

 Currently: Endocrine adversity exclusively assessed with in vivo data, NAMs can 
be used to provide information on endocrine activity and substantiate WoE

 Challenges: Thyroid modality is highly complex, no validated methods to 
investigate these pathways, potential co-occurring MoA should be dismissed 
when assessing human relevance, limited regulatory acceptance of recent NAMs

 Opportunities: NAMs can provide mechanistic insights, AOP network supports 
integration and evaluation of human relevance. Further development of NAMs is 
needed and dialogue between CROs, industry and regulatory authorities to 
enhance regulatory confidence and acceptance
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